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The oscillatory behaviour of  a certain class of  dissolution processes involving anodic dissolution of  
a metal and the formation of  a passivating substance is analysed in terms of  renewals via isomorphism 
with a Type I counter in queuing theory. 

Nomenclature 

E(x) 
E, 

m 

N, 

statistical expectation of random variable X 
expected frequency in the ith class of obser- 
vation (due to a postulated probability dis- 
tribution) 
renewal number 
number of renewals in time period (0, t) 
observed frequency in the ith class obser- 
vation 

1. Introduction 

Anodic dissolution processes have recently drawn a 
good deal of attention as a particularly attractive area 
of application for modern stability theory, especially 
one of its newest branches, chaos dynamics [for 
example, 1-4]. The dissolution of copper in phosphoric 
acid [5] served as one appropriate case where the 
deterministic component of its overall behaviour is 
studied in terms of appropriate Poincar6 sections of its 
phase portraits. Although a direct understanding of a 
physical mechanism derived solely from stability 
studies has not yet been generally demonstrated, such 
approaches hold promise for the analysis of surface 
and hydrodynamic phenomena influencing the overall 
dissolution process. 

An alternative approach to the analysis of anodic 
dissolution may be sought via renewal theory, a 
domain of the mathematics of probabilities. Developed 
orginally to study failure and component-replacement 
problems, renewal theory has found application in 
various unrelated areas possessing similar probabilistic 
structures [6]. The purpose of this paper is to portray 
the scope of renewal theory in analysing a certain class 
of anodic dissolution, whose overall behaviour is 
traced through characteristic parameters of an equiv- 
alent process. 

2. Basic theory 

The fundamental tenet of the approach is summarized 
in Table 1: the dissolution process and a Type I 
counter [7] exhibit structural isomorphism if a sub- 
stance dissolves anodically, then a second substance 

R(t) renewal function (Equation 3) 
T m time lapsed until the m th renewal 
t time 
p density parameter of the experimental prob- 

ability density function 
~b(u) Gaussian probability density function of ran- 

dom variable u 
)~2 chi-square statistic 

(passivator) blocks a dissolution site temporarily, 
liberating some time later the site upon its desorption 
for dissolution. The dissolution process is considered 
to be a sequential repetition of this cycle with the time 
of blockage possessing a certain probability density 
function (PDF). For a Type I counter the occurrence 
of arrivals is a Poisson process occurring at rate p and 
the PDF of arrival times is p exp ( - p t ) ,  an exponen- 
tial distribution. This renewal scheme can, therefore, 
be analysed in terms of probability theory, where the 
following parameters are of specific importance: 

(i) N, - the number of renewals in time period (0, t), 
which possesses a Poisson distribution with /~ = pt 
and o- = (pt) 1/2. The probability of exactly m renewals 
occurring in (0, t) is 

Pr [N, 

m 

m ] =  
(pt) m exp ( - p t ) .  

m! 

= 0, 1 , 2 , . . .  (1) 

and the relationship 

ra--I 
Pr [N~ < m] = ~ (pt)iexp ( -p t )  

j=o J! (2) 

yields the probability of less than m renewals in the 
(0, t) time period. The expectation of N~ is, in this case, 
simply the (pt) product, known as the renewal function; 
R(t). 

( p t )  r" exp ( - p t )  
R(t)=- E(N~) = ~' m = pt (3) 

m=o m[ 

If t is sufficiently large, Equation 2 may be approxi- 
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Table 1. The structural isomorphism o f a n  anodic dissolution process and a Type I counter [7] 

Dissolution process Type I counter 

A. At zero time the second substance (passivator) occupies 
site until time t t ; there is no dissolution of the first 
substance in [0, t~). 

B. At t = fi the passivator detaches from the site and 
dissolution proceeds in time t~, independent of t~. 

C. The site is blocked again by the passivator until time t2, 
independent of ft. 

D. At t = t 2 the site is free again due to detachment and 
dissolution proceeds in time t;, independent of t 2. 

A. At zero time the counter is blocked until time tt; no 
arrivat is recorded in t t . 

B. At t = t I the counter is open and an arrival in time is 
t{ registered, independent of t~. 

C. The counter is blocked until time t 2, independent of ft. 

D. At t = t 2 and counter is open again and an arrival in 
time t;, independent of t z, is registere& 

mated by the expression 

P r [ N , <  m ] ~ l -  ~b(.t~m/~/P- ) (4) 

where ~b(u) is the Gaussian normalised cumulative 
distribution function: 

qS(u) = f~_~ exp - dx (5) 

(ii) T= - the time lapsed until the mth renewal. 
By the equivalence of probabilities 

er[Nm > r] = Pr(Tm < t , . )  

the probability that for a specified M number of 
renewals the time is less than a specified time t m is 
given by 

~o (p t . , )  j e x p  ( - - p t m )  
Pr[T~ < tin] = Z 

~=~ j!  

in the case of a Poisson type renewal process. If  t is 
sufficiently large, Equation 6 may be approximated 
by the normal distribution: 

(t m - m / p )  
Pr [T.~ < tin] = 4) (ml/Z/p) 

This approximation is especially useful if (ptm) is not 
an integer, since cumbersome interpolation of Poisson 
distribution tabulations would otherwise be necessary. 

3. Application 

that the experimentally obtained histogram can be 
approximated at a certain confidence level by an 
exponential distribution. Employing the conventional 
chi-square test [8], if the test statistic 

4, (o, - ~)2 ;(2 
i= Z.,1 E i 

J = number of histogram cells (8) 

is less than the critical values at confidence level ~ and 
degree of freedom v = J - 2 of the tabulated chi- 
square distribution, the hypothesis cannot be rejected 
(at the level c0. Then, the analysis described in the 
previous section can be applied directly. 

4. Numerical illustration 

Figure 1 depicts the variation of current with time 
in an hypothetical anodic metal dissolution process 

(6) where the anodically produced cation forms a pre- 
cipitate with one of the electrolyte anions. The 
precipitate temporarily occupies a certain portion of 
the anodic surface, causing a drop in the current, but 
it is detached from the surface at random time inter- 
vals due to convective motion of the electrolyte. Metal 
continues to dissolve at the liberated sites and the (7) 
current increases until the next onset Of precipitate 
deposition. The cycle is repeated over a certain time 
period (for example, the duration of a laboratory 
experiment). 

If an anodic dissolution process may be modelled as a 
Type I counter, the PDF of the time lapsed from 
surface blockage, that is, the occupation of a site by Cell Time 
the passivator until the full evolution of the dis- number interval, 
solution of the first substance, has to be exponential, rain. 

The test for the exponential nature of the PDF has 
1 0-0.1 

two steps. First, the histogram of the frequency of 2 0.1-0.2 
time registered for the current to read a maximum 3 0.2-0.3 
value from its previous minimum value (see Fig. 1) 4 0.3-0.4 

is established. The second step consists of the examin- 5 0.4-0.5 
6 0.5-0.6 ation of the hypothesis by a 'goodness-of-fit' test 

Table 2. Statistical evaluation of  the current oscillation in Fig. 1. 
'Goodness-of-fit' test for  the exponential distribution." PDF = 
p exp (-pt) ," p = 4.545rain - t  

Number of  
observed 
occurrences, 0 i 

p,(t) E, 

9 
7 

12 
5 
4 
3 9 
2 

0.3652 
0.2319 
0.1472 
0.0936 
0.0589 
0.0376 

10.957 
6.956 
4.417 
2.809 
1.768 
1.127 

11,373 

5.704 
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Fig. I. An  empirical current oscillation graph for the numerical 
illustration. 

The analysis of the experimental frequency distri- 
bution of the times for the current to reach its maxi- 
mum value from its previous minimum value is 
summarized in Table 2. The expected number of times 
in each cell was computed by multiplying the total 
number of observations with the integral of the 
postulated expotential PDF with density p = 4.545 
min -1 , computed from the observed data: 

E~ = 30 [exp ( -4 .545t~ 1) - exp (-4.545t~)  

(9) 

Combining the second and third, and the fourth, fifth 
and sixth cells in order to maintain a sufficiently high 
frequency in each cell [9], the chi-square statistic is 
computed as 

(10.957 - 9) 2 (11.373 - 12) 2 
X 2 : -  -t- 

10.957 11.373 

+ 
(5.704 - 9) 2 

5.704 
- 2.289 

Table 3. The probability o f  the occurrence o f  exactly m number o f  
dissolution renewals during time periods (0, t) 

m Pr (N t=,. ) (Eqn 1 ) 
t* = 1/p t + = 2/p 

0 0.368 0.135 
1 0.368 0.271 
2 0.184 0.271 
3 0.061 0.!80 
4 0,015 0.090 
5 0.003 0,040 

* Time equals the mean 
I Time equals the mean 
E(N,) = 2. 

renewal time. E(Nt) = 1. 
renewal time plus its s tandard deviation. 

vations can be rejected only at a non-significant level 
of confidence (the computed Z 2 = 2.289 is critical at 
0.12 < c~ < 0.13)[10]. 

p i ( t )  = exp ( - 4 . 5 4 5  ti 1) - exp ( - 4 . 5 4 5  ti) 

p = 30/[9(0.05) + 7(0.15) + 5(0.25) + 4(0.35) 

+ 3(0.45) + 2(0.55)] 

= 4.545 rain -~ 

Consequently, the dissolution process can be assigned 
a Type I counter-equivalent with a renewal density 
(density of site liberation or the dissolution of  the first 
substance) of 4.545min - l ,  or mean renewal time of 
0.22min. Further characteristics are assembled in 
Tables 3-5; the latter demonstrates the gradually 
diminishing discrepancy between the normal approxi- 
mation and the rigorous Poisson model, as tm increases. 

5. Discussion 

The usefulness of the renewal theory-based approach 
is particularly manifest by the rapidity of detection of 
changes in dissolution mechanism, for example, the 
influence of an external field. Such changes would be 
identified via a strong numerical shift in the density of 
the exponential PDF of the dissolution, with respect 
to the reference case. Failure of  a 'goodness-of-fit' test 
to indicate that an exponential distribution can fit the 
experimental current-frequency his togram at an 
acceptable level of statistical accuracy would demon- 
strate a serious structural change in the dissolution 
mechanism. Under certain circumstances, however, 

Table 4. The probability o f  the number o f  dissolution renewals being 
less than m during time periods (0, t) 

m er  (N,<,,) (Eqn 2) 
t* = l ip t t  = 2/p 

in accordance with Equation 8. The degree of free- 1 
dom being 3 - 2 = 1, the critical values of  the chi- 2 
square distribution 3.841 (e = 0.05); 2.706 3 
(~ = 0.10) and 1.323 (c~ = 0.25) indicate that the 4 

5 
hypothesis of the exponential substitution (with 
p = 4.545rain 1) fitting the experimental obser- 

0.736 0.406 
0.920 0,677 
0.981 0,857 
0.996 0,947 
0,999 0.983 

*P See footnotes in Table 3. 
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Table 5. The probability of  the time of the m th renewal time being less than t m as a function of  m 

m Pr ( T  m < tm)* 

t = lip t = 2/p t = 3/p t = 1 
Eqn 6 Eqn 7 Eqn 6 Eqn 7 Eqn 6 Eqn 7 Eqn 7 

1 0.632 0.500 0.865 0.841 0.950 0.977 0.999 
2 0.264 0.239 0.594 0.500 0.80l 0.761 0.964 
3 0.080 0.125 0.323 0.281 0.577 0.500 0.813 
4 0.019 0.067 0.143 0.159 0.353 0.308 0.606 
5 0.004 0.037 0.053 0.090 0.185 0.189 0.421 
6 0.001 0.021 0.017 0.052 0.084 0.111 0.274 
7 10 .4 0.005 0.005 0.029 0.033 0.066 0.176 

* Time equals the mean renewal time. E(N~) = 1. 

related probability distributions may well apply, as in 
the instance of an electrode surface, where passivation 
occurs, in k distinct (mechanistic) stages, each having 
its time of duration Y1, Y2 . . . .  , Yk. If these times are 
independently distributed, each with an exponential 
PDF of p exp (-py),  then the onset of passivation 
occurs at a time X = Y1 + I12 + . . .  + Yk and its 
PDF can be considered to be isomorphic to that of a 
Special Erlangian distribution (SED) where failure 
occurs at the end of the k-stage: 

p.d.f. (SED) = P(PX)k ' exp ( -px)  (10) 
(k  - 1)~ 

More generally, if each stage has an individual density 
Pi, i = 1 , . . . , k t h e  

k 

PDF (GED) = ~ A,p, exp (-p,x) (11) 
i = 1  

A, = 1-I & (12) 
.]=~i Pj Pi 

characterises a General Erlangian distribution. These 
models of renewal theory could equally be utilised for 
the probabilistic description of multistage anodic dis- 
solution and (cathodic) deposition processes under 
appropriate conditions. 

The particular application presented in this paper is 
mathematically simple and serves as a precursor for a 
more complex employment of renewal theory, whose 
full scope remains to be explored. 

6. Concluding remarks 

The probabilistic approach based on equivalent 
models in renewal theory is an alternative to paths of 
analysis linked to modern stability theory and the 
theory of chaos. Both approaches offer interpretations 
which do not depend on the exact microscopic under- 
standing of the physical process analysed, offering 
complementary tools for the study of physical 
phenomena. 
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